Competing Anisotropy-Tunneling Correlation of the CoFeB/MgO Perpendicular Magnetic Tunnel Junction: An Electronic Approach

نویسندگان

  • Chao-Yao Yang
  • Shu-Jui Chang
  • Min-Han Lee
  • Kuei-Hung Shen
  • Shan-Yi Yang
  • Horng-Ji Lin
  • Yuan-Chieh Tseng
چکیده

We intensively investigate the physical principles regulating the tunneling magneto-resistance (TMR) and perpendicular magnetic anisotropy (PMA) of the CoFeB/MgO magnetic tunnel junction (MTJ) by means of angle-resolved x-ray magnetic spectroscopy. The angle-resolved capability was easily achieved, and it provided greater sensitivity to symmetry-related d-band occupation compared to traditional x-ray spectroscopy. This added degree of freedom successfully solved the unclear mechanism of this MTJ system renowned for controllable PMA and excellent TMR. As a surprising discovery, these two physical characteristics interact in a competing manner because of opposite band-filling preference in space-correlated symmetry of the 3d-orbital. An overlooked but harmful superparamagnetic phase resulting from magnetic inhomogeneity was also observed. This important finding reveals that simultaneously achieving fast switching and a high tunneling efficiency at an ultimate level is improbable for this MTJ system owing to its fundamental limit in physics. We suggest that the development of independent TMR and PMA mechanisms is critical towards a complementary relationship between the two physical characteristics, as well as the realization of superior performance, of this perpendicular MTJ. Furthermore, this study provides an easy approach to evaluate the futurity of any emerging spintronic candidates by electronically examining the relationship between their magnetic anisotropy and transport.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Enhanced tunneling magnetoresistance and perpendicular magnetic anisotropy in Mo/CoFeB/MgO magnetic tunnel junctions

Articles you may be interested in Perpendicular magnetic anisotropy in Ta|Co40Fe40B20|MgAl2O4 structures and perpendicular CoFeB|MgAl2O4|CoFeB magnetic tunnel junction Appl. Large enhanced perpendicular magnetic anisotropy in CoFeB/MgO system with the typical Ta buffer replaced by an Hf layer

متن کامل

Perpendicular-magnetic-anisotropy CoFeB racetrack memory

Related Articles Electric field effects in low resistance CoFeB-MgO magnetic tunnel junctions with perpendicular anisotropy Appl. Phys. Lett. 100, 122405 (2012) Spin-torque diode spectrum of ferromagnetically coupled (FeB/CoFe)/Ru/(CoFe/FeB) synthetic free layer J. Appl. Phys. 111, 07C917 (2012) Characterization of interlayer interactions in magnetic random access memory layer stacks using ferr...

متن کامل

Rapid thermal annealing study of magnetoresistance and perpendicular anisotropy in magnetic tunnel junctions based on MgO and CoFeB

The tunneling magnetoresistance and perpendicular magnetic anisotropy in CoFeB(1.1-1.2 nm)/ MgO/CoFeB(1.2-1.7 nm) junctions were found to be very sensitively dependent on annealing time. During annealing at a given temperature, decay of magnetoresistance occurs much earlier compared to junctions with in-plane magnetic anisotropy. Through a rapid thermal annealing study, the decrease of magnetor...

متن کامل

Superparamagnetism in MgO-based magnetic tunnel junctions with a thin pinned ferromagnetic electrode

MgO-based magnetic tunnel junctions have been fabricated with a thin Co40Fe40B20 CoFeB layer in the pinned synthetic antiferromagnetic CoFe/Ru/CoFeB stack. An inverted tunneling magnetoresistance is observed due to the unbalanced synthetic antiferromagnet. Superparamagnetic nanoparticles form when the CoFeB layer is thinner than 1.5 nm, and an abnormal temperature dependence of the junction res...

متن کامل

A perpendicular-anisotropy CoFeB-MgO magnetic tunnel junction.

Magnetic tunnel junctions (MTJs) with ferromagnetic electrodes possessing a perpendicular magnetic easy axis are of great interest as they have a potential for realizing next-generation high-density non-volatile memory and logic chips with high thermal stability and low critical current for current-induced magnetization switching. To attain perpendicular anisotropy, a number of material systems...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2015